#include "calculations.qh" // ============================= // Explosion Force Calculation // ============================= float explosion_calcpush_getmultiplier(vector explosion_v, vector target_v) { float a; a = explosion_v * (explosion_v - target_v); if(a <= 0) // target is too fast to be hittable by this return 0; a /= (explosion_v * explosion_v); // we know we can divide by this, or above a would be == 0 return a; } #if 0 vector explosion_calcpush(vector explosion_v, float explosion_m, vector target_v, float target_m, float elasticity) { // solution of the equations: // v' = v + a vp // central hit // m*v' + mp*vp' = m*v + mp*vp // conservation of momentum // m*v'^2 + mp*vp'^2 = m*v^2 + mp*vp^2 // conservation of energy (ELASTIC hit) // -> a = 0 // case 1: did not hit // -> a = 2*mp*(vp^2 - vp.v) / ((m+mp) * vp^2) // case 2: did hit // // non-elastic hits are somewhere between these two // this would be physically correct, but we don't do that return explosion_v * explosion_calcpush_getmultiplier(explosion_v, target_v) * ( (1 + elasticity) * ( explosion_m ) / ( target_m + explosion_m ) ); // note: this factor is at least 0, at most 2 } #endif // simplified formula, tuned so that if the target has velocity 0, we get exactly the original force vector damage_explosion_calcpush(vector explosion_f, vector target_v, float speedfactor) { // if below 1, the formulas make no sense (and would cause superjumps) if(speedfactor < 1) return explosion_f; #if 0 float m; // find m so that // speedfactor * (1 + e) * m / (1 + m) == 1 m = 1 / ((1 + 0) * speedfactor - 1); vector v; v = explosion_calcpush(explosion_f * speedfactor, m, target_v, 1, 0); // the factor we then get is: // 1 LOG_INFOF("MASS: %f\nv: %v -> %v\nENERGY BEFORE == %f + %f = %f\nENERGY AFTER >= %f", m, target_v, target_v + v, target_v * target_v, m * explosion_f * speedfactor * explosion_f * speedfactor, target_v * target_v + m * explosion_f * speedfactor * explosion_f * speedfactor, (target_v + v) * (target_v + v)); return v; #endif return explosion_f * explosion_calcpush_getmultiplier(explosion_f * speedfactor, target_v); } // ========================= // Shot Spread Calculation // ========================= vector cliptoplane(vector v, vector p) { return v - (v * p) * p; } vector solve_cubic_pq(float p, float q) { float D, u, v, a; D = q*q/4.0 + p*p*p/27.0; if(D < 0) { // irreducibilis a = 1.0/3.0 * acos(-q/2.0 * sqrt(-27.0/(p*p*p))); u = sqrt(-4.0/3.0 * p); // a in range 0..pi/3 // cos(a) // cos(a + 2pi/3) // cos(a + 4pi/3) return u * vec3( cos(a + 2.0/3.0*M_PI), cos(a + 4.0/3.0*M_PI), cos(a) ); } else if(D == 0) { // simple if(p == 0) return '0 0 0'; u = 3*q/p; v = -u/2; return (u >= v) ? vec3(v, v, u) : vec3(u, v, v); } else { // cardano //u = cbrt(-q/2.0 + sqrt(D)); //v = cbrt(-q/2.0 - sqrt(D)); a = cbrt(-q/2.0 + sqrt(D)) + cbrt(-q/2.0 - sqrt(D)); return vec3(a, a, a); } } vector solve_cubic_abcd(float a, float b, float c, float d) { // y = 3*a*x + b // x = (y - b) / 3a float p, q; vector v; p = (9*a*c - 3*b*b); q = (27*a*a*d - 9*a*b*c + 2*b*b*b); v = solve_cubic_pq(p, q); v = (v - b * '1 1 1') * (1.0 / (3.0 * a)); if(a < 0) v += '1 0 -1' * (v.z - v.x); // swap x, z return v; } vector findperpendicular(vector v) { return normalize(cliptoplane(vec3(v.z, -v.x, v.y), v)); } #ifdef SVQC int W_GunAlign(entity this, int preferred_align) { if(this.m_gunalign) return this.m_gunalign; // no adjustment needed entity own = this.owner; if(preferred_align < 1 || preferred_align > 4) preferred_align = 3; // default for(int j = 4; j > 1; --j) // > 1 as 1 is just center again { int taken = 0; for(int slot = 0; slot < MAX_WEAPONSLOTS; ++slot) { .entity weaponentity = weaponentities[slot]; if(own.(weaponentity).m_gunalign == j) // we know it can't be ours thanks to the above check taken |= BIT(j); if(own.(weaponentity).m_gunalign == preferred_align) taken |= BIT(preferred_align); } if(!(taken & BIT(preferred_align))) return preferred_align; // prefer the recommended if(!(taken & BIT(j))) return j; // or fall back if it's not available } return preferred_align; // return it anyway } #else int W_GunAlign(entity this, int preferred_align) { return this.m_gunalign > 0 ? this.m_gunalign : preferred_align; } #endif #if 0 int W_GetGunAlignment(entity player) { int gunalign = STAT(GUNALIGN, player); if(gunalign < 1 || gunalign > 4) gunalign = 3; // default value --gunalign; return gunalign; } #endif vector W_CalculateSpreadPattern(int pattern, int counter, int total) { vector s = '0 0 0'; switch (pattern) { default: case 1: { // first is always centered if (counter == 0) return '0 0 0'; makevectors('0 360 0' * (0.75 + (counter - 0.5) / (total - 1))); s.y = v_forward.x; s.z = v_forward.y; return s; } case 2: { // first is always centered if (counter == 0) return '0 0 0'; // points form a round circle with even distribution // this could be simplified to '0 360 0' * (counter / total) // but it would lose ALL the specific placements // for example with this 2 pellets is center + directly up // while 3 pellets is a horizontal sweep and and 4 is an upside // down Y shape, 5 is a star instead of a pentagram, // 9 is a 3x3 grid and 13 is a circle with center + 3 per quadrant makevectors('0 360 0' * ((0.25 * ((total + 1) % 2)) + (counter / (total - 1)))); // return transform vector s.y = v_forward.x; s.z = v_forward.y; //else // return original result normal vector //s = v_forward; return s; } } } vector W_CalculateSpread(vector forward, float spread, float spreadfactor, float spreadstyle) { float sigma; vector v1 = '0 0 0', v2; float dx, dy, r; spread *= spreadfactor; //autocvar_g_weaponspreadfactor; if(spread <= 0) return forward; switch(spreadstyle) { case 0: { // this is the baseline for the spread value! // standard deviation: sqrt(2/5) // density function: sqrt(1-r^2) return forward + randomvec() * spread; } case 1: { // same thing, basically return normalize(forward + cliptoplane(randomvec() * spread, forward)); } case 2: { // circle spread... has at sigma=1 a standard deviation of sqrt(1/2) sigma = spread * 0.89442719099991587855; // match baseline stddev v1 = findperpendicular(forward); v2 = cross(forward, v1); // random point on unit circle dx = random() * 2 * M_PI; dy = sin(dx); dx = cos(dx); // radius in our dist function r = random(); r = sqrt(r); return normalize(forward + (v1 * dx + v2 * dy) * r * sigma); } case 3: // gauss 3d { sigma = spread * 0.44721359549996; // match baseline stddev // note: 2D gaussian has sqrt(2) times the stddev of 1D, so this factor is right v1 = forward; v1_x += gsl_ran_gaussian(sigma); v1_y += gsl_ran_gaussian(sigma); v1_z += gsl_ran_gaussian(sigma); return v1; } case 4: // gauss 2d { sigma = spread * 0.44721359549996; // match baseline stddev // note: 2D gaussian has sqrt(2) times the stddev of 1D, so this factor is right v1_x = gsl_ran_gaussian(sigma); v1_y = gsl_ran_gaussian(sigma); v1_z = gsl_ran_gaussian(sigma); return normalize(forward + cliptoplane(v1, forward)); } case 5: // 1-r { sigma = spread * 1.154700538379252; // match baseline stddev v1 = findperpendicular(forward); v2 = cross(forward, v1); // random point on unit circle dx = random() * 2 * M_PI; dy = sin(dx); dx = cos(dx); // radius in our dist function r = random(); r = solve_cubic_abcd(-2, 3, 0, -r) * '0 1 0'; return normalize(forward + (v1 * dx + v2 * dy) * r * sigma); } case 6: // 1-r^2 { sigma = spread * 1.095445115010332; // match baseline stddev v1 = findperpendicular(forward); v2 = cross(forward, v1); // random point on unit circle dx = random() * 2 * M_PI; dy = sin(dx); dx = cos(dx); // radius in our dist function r = random(); r = sqrt(1 - r); r = sqrt(1 - r); return normalize(forward + (v1 * dx + v2 * dy) * r * sigma); } case 7: // (1-r) (2-r) { sigma = spread * 1.224744871391589; // match baseline stddev v1 = findperpendicular(forward); v2 = cross(forward, v1); // random point on unit circle dx = random() * 2 * M_PI; dy = sin(dx); dx = cos(dx); // radius in our dist function r = random(); r = 1 - sqrt(r); r = 1 - sqrt(r); return normalize(forward + (v1 * dx + v2 * dy) * r * sigma); } default: error("g_projectiles_spread_style must be 0 (sphere), 1 (flattened sphere), 2 (circle), 3 (gauss 3D), 4 (gauss plane), 5 (linear falloff), 6 (quadratic falloff), 7 (stronger falloff)!"); } return '0 0 0'; /* * how to derive falloff functions: * rho(r) := (2-r) * (1-r); * a : 0; * b : 1; * rhor(r) := r * rho(r); * cr(t) := integrate(rhor(r), r, a, t); * scr(t) := integrate(rhor(r) * r^2, r, a, t); * variance : scr(b) / cr(b); * solve(cr(r) = rand * cr(b), r), programmmode:false; * sqrt(0.4 / variance), numer; */ }